首页> 外文OA文献 >Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained
【2h】

Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

机译:通过气孔控制植物挥发物的排放:解释了排放速率对气孔关闭的不同敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[1] Volatile (VOC) flux from leaves may be expressed as G(S)DeltaP, where G(S) is stomatal conductance to specific compound and DeltaP partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in G(S) are balanced by increases in DeltaP such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m(3) mol(-1)). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 10(3) have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10(-2)-10(1) are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance DeltaP in response to a decrease in G(S) is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase.
机译:[1]来自叶片的挥发性(VOC)通量可以表示为G(S)DeltaP,其中G(S)是特定化合物的气孔导度,以及大气和气孔下腔之间的DeltaP分压梯度。已经提出,G(S)的减少与DeltaP的增加是平衡的,使得气孔不能控制VOC排放。然而,各种挥发物的排放速率对气孔孔径​​实验操作的反应却是相反的。为了解释这些争议,使用亨利定律常数(H,Pa m(3)mol(-1)),考虑了气相和液相之间的VOC分布,开发了一种动态排放模型。我们的分析表明,高挥发性化合物,例如H值约为10(3)的异戊二烯和单萜,其气体和液体池的半衰期为几秒钟,因此无法通过气孔进行控制。 H值为10(-2)-10(1)的更易溶的化合物(如醇和羧酸)受气孔控制,气孔敏感度随H的变化而变化。高溶解度的化合物无法支持高分压,因此,响应G(S)的下降来平衡DeltaP是不同气孔敏感性的主要解释。对于低氢的化合物,分析预测气孔开放后的发射爆发符合实验观察结果,但目前尚无法解释。 H含量低的化合物中较大的叶内VOC池尺寸也会增加系统对环境波动的惯性。总之,必须使用动态模型来模拟化合物排放物的昼夜变化,最好是分配到水相中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号